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Abstract

Chagas disease affects nearly 6 million people world-
wide, with Chagas cardiomyopathy representing its most
severe complication. AI-based ECG screening is promis-
ing in settings where serological testing capacity is lim-
ited, but current machine learning approaches face chal-
lenges including limited accuracy, poor interpretability,
and dependence on large labeled datasets. Moreover, they
remain difficult to integrate with evidence-based clinical
diagnostic indicators. We propose CardioRAG, a novel
retrieval-augmented generation (RAG) framework that in-
tegrates large language model (LLM) with interpretable
ECG clinical features. Variational autoencoder-learned
representations were used for semantic case retrieval, pro-
viding similar ECG cases to guide LLM-based clinical rea-
soning. On an independent validation set of 100 cases,
CardioRAG achieved 58.59% accuracy with 87.76% re-
call and F1 score of 0.68, effectively identified positive
cases for prioritized serological testing. The framework
provides a clinical evidence-based approach to Chagas
disease screening that combines clinical knowledge with
AI reasoning, also demonstrates a promising pathway for
embedding clinical indicators into broader AI systems for
diagnosis. This study was conducted as part of the Phys-
ioNet Challenge 2025 (Team: ECGenius). The proposed
model was unable to be scored on the hidden test set.

1. Introduction

Chagas disease is a neglected tropical disease affect-
ing approximately 6 million people worldwide, with fewer
than 10% aware of their infection status [1]. The dis-
ease can progress to Chagas cardiomyopathy (ChCM),
where electrocardiographic abnormalities often precede
overt structural heart disease [2]. ECG provides a prag-
matic, low-cost tool for early risk stratification in resource-
limited settings, enabling prioritized serological testing

and more efficient resource allocation [3, 4].
Recently, modern data-driven approaches have enabled

new paradigms for disease detection from physiological
signals. Advanced machine-learning methods can model
non-linear relationships between disease status and mul-
tivariate time-series signals, such as ECG [5] and move-
ment [6]. However, current methods exhibit persistent lim-
itations: (i) performance instability across domains due
to population shift and limited calibration [7], (ii) lim-
ited clinical interpretability hindering trust and adoption,
and (iii) dependence on large, well-curated labeled datasets
that are scarce for neglected diseases.

To address these challenges, we introduce CardioRAG,
a novel multimodal retrieval-augmented generation (RAG)
framework integrating interpretable ECG clinical features
with LLM-based diagnostic reasoning. It targets the crit-
ical screening scenario where high recall is essential for
identifying potential Chagas cases for prioritized serologi-
cal testing. This work makes three key contributions: (1) a
clinically-grounded RAG pipeline combining established
ECG biomarkers (RBBB, LAFB) with heart rate variabil-
ity metrics, achieving consistent high recall performance
(>85%) across different model configurations; (2) a VAE-
based representation learning system coupled with demo-
graphic screening, enabling effective similar case retrieval;
(3) empirical demonstration that prompt simplification and
balanced case retrieval optimize RAG performance.

2. Methodology

We propose a comprehensive framework for automated
Chagas disease detection that integrates deep ECG rep-
resentation learning with retrieval-augmented generation
(RAG) [8] for enhanced diagnostic reasoning. The sys-
tem (Figure 1) processes 12-lead ECG with patient demo-
graphic data (age, sex) through three main stages: extrac-
tion of clinical features from ECG signals; VAE-based rep-
resentation learning for semantic similarity [9]; and RAG-
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Figure 1: The CardioRAG Framework for Chagas disease diagnosis from 12-lead ECG signals. The system preprocesses
raw ECG data, extracts clinical and latent features via VAE, retrieves relevant cases from a RAG database, and generates
structured diagnoses with confidence scores using a large language model.

enhanced diagnostic decision making with large language
models (LLMs).

2.1. Datasets and preprocessing

This study utilized three publicly available ECG datasets
from the PhysioNet Challenge [3, 4, 10]: SaMi-Trop
dataset, PTB-XL dataset, and CODE-15% dataset. All
ECG signals underwent standardized pre-processing: (1)
resampling recordings to 400 Hz using linear interpolation,
(2) standardizing signal durations to 7 seconds through
cropping or padding, and (3) filtering using the NeuroKit2
toolbox for noise removal and baseline correction.

2.2. Chagas-specific feature engineering

Chagas disease and ChCM manifest as specific ECG ab-
normalities, particularly conduction and rhythm disorders
[2]. For conduction disorders, we implemented automated
detection of right bundle branch block (RBBB) and left
anterior fascicular block (LAFB) using Minnesota Code
criteria [11]. RBBB and LAFB represent key ChCM man-
ifestations, with prevalence rates of 34-40% and 23-39%
respectively in ChCM patients [2]. Table 1 outlines the
specific ECG parameters required for automated detection.

Table 1: ECG Parameters used for diagnosis

Feature Target Leads Required ECG Parameters

RBBB I, II, III, aVL
aVF, V1, V2

QRS duration, R wave duration, R peak
duration, R wave amplitude, R’ wave
amplitude, S wave duration, S wave am-
plitude, net QRS deflection

LAFB I, II, III, aVL
aVF

QRS duration, Q wave duration, Q wave
amplitude, QRS axis angle

For rhythm assessment, RR-derived metrics were ex-
tracted from lead V5, including ventricular rate and
RMSSD (root mean square of successive differences).

RMSSD serves as a short-term heart rate variability index,
with reduced values significantly associated with Chagas
disease [12]. These features, combined with demographic
information (age and sex), form the comprehensive multi-
modal input to the RAG diagnostic system.

2.3. CardioRAG diagnostic architecture

The RAG framework addresses the fundamental chal-
lenge of labeled data scarcity in Chagas disease detection
by enabling case-based reasoning via retrieval of similar
historical cases. This diagnostic approach aligns with clin-
ical practice, in which physicians rely on prior cases to
guide complex diagnostic decisions. [8, 13].

Variational autoencoder for signal embedding. We
employ a variational autoencoder (VAE) [9] to learn com-
pact ECG representations that support effective similarity
search. The encoder consists of four residual blocks with
progressively increasing channels (32, 64, 128, 256). Each
residual block contains two 1D convolutions with Batch
Normalization, ReLU and a skip connection. The encoder
outputs (µ) and log-variance (log σ2) parameters of a 256-
dimensional latent distribution. Training employs the stan-
dard VAE objective:

L = Lrecon + β · LKL (1)

where Lrecon = Eqϕ(z|x)[log pθ(x|z)] is the reconstruction
loss, LKL = DKL(qϕ(z|x)||p(z)) is the KL divergence reg-
ularization term, and β is set to 0.1 based on validation
performance.

Case retrieval mechanism. The retrieval process im-
plements a two-stage search strategy combining VAE-
based similarity with demographic filtering. Similarity
search begins in the VAE latent space using cosine simi-
larity to identify the k most similar cases (with k tuned on
validation data). The secondary filtering computes a com-
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posite similarity score:

Scomposite = SVAE + wage · Sage (2)

where SVAE is normalized VAE similarity, Sage reflects age
similarity using a Gaussian kernel with σ = 10 years, and
wage is the weighting coefficient. Retrieved cases are for-
matted into structured context for the LLM, including pa-
tient demographics, detected clinical features, HRV met-
rics, and diagnostic labels, with length control to avoid
prompt overflow.

LLM powered diagnostic reasoning. The LLM re-
ceives structured prompts containing patient features and
retrieved similar cases, generating diagnostic predictions
with confidence scores and clinical reasoning. The LLM
output follows a structured JSON format containing: (1)
binary diagnosis (POSITIVE/NEGATIVE), (2) confidence
percentage, (3) detailed clinical reasoning, (4) identified
diagnostic indicators, (5) relevant risk factors, and (6)
other cardiac findings. Note while confidence scores are
generated, we found them unreliable for smaller LLMs and
thus focus evaluation on binary diagnostic performance.

Example (LLM-generated diagnostic rationale).
“The patient presents with RBBB satisfaction indicating
a right bundle branch block, which is consistent with Cha-
gas. The low RMSSD in Lead V6 (7.8 ms) strongly suggests
a heart rhythm abnormality indicative of Chagas. No other
significant ECG findings are noted, and the data supports
a clear positive diagnosis.” Diagnosis: Chagas positive.

3. Results and analysis
We evaluated the CardioRAG framework using the

DeepSeek-R1:1.5b language model on a test set of 100
patients, consisting of 50 consecutive positive cases from
the SaMi-Trop dataset and 50 consecutive negative con-
trols from the PTB-XL dataset. Our experiments focused
on two critical aspects: the impact of prompt engineering
and RAG retrieval strategies on diagnostic performance.

Note on official Challenge submission. Our CardioRAG
framework was unable to be scored on the official hidden
test set due to technical constraints. Instead, we submit-
ted a supervised deep neural network baseline, D-Net [6],
achieved an official Challenge score of 0.190 (ranked 29)
under our team name (ECGenius). Therefore, the official
leaderboard score and ranking do not reflect the perfor-
mance of the CardioRAG model in this work.

3.1. Prompt engineering
Figure 2 presents the performance comparison across

four prompt configurations. Counterintuitively, the “P2
Simplified Clinical” configuration achieved the best per-
formance with 58.59% accuracy, 87.76% recall, and
67.72% F1 score, representing significant improvements
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Figure 2: Impact of prompt engineering (top-k retrieved
case, k=8). Configurations: P1 Detailed prompt (baseline,
full ECG criteria and clinical instructions), P2 Simplified
Clinical (without detailed ECG criteria for RBBB/LAFB),
P3 Context-Free (without diagnostic background), P4
Conservative (includes cautionary guidance for positive di-
agnoses).

over the “P1 Detailed Baseline” (52.53% accuracy,
85.71% recall, 64.12% F1). This 6.06 percentage point
accuracy improvement suggests that for smaller language
models, concise prompts focusing on key decision factors
outperform exhaustive clinical descriptions with detailed
RBBB/LAFB detection criteria.

Notably, adding cautionary instructions (“P4 Conserva-
tive”) decreased performance to 54.55% accuracy, indicat-
ing that overly conservative prompting may bias the model
toward indecision. The optimal configuration maintained
essential clinical context while avoiding information over-
load. In the annalysis, one case could not produce a valid
structured output from the language model and was there-
fore excluded from the subsequent evaluation.

3.2. Retrieval strategies

Table 2 demonstrates the impact of retrieval augmen-
tation on diagnostic performance. The relationship be-
tween the number of retrieved cases (k) and accuracy fol-
lows an inverted U-shape, with optimal performance at
k=8 (58.59% accuracy). The baseline prompt (P1) with-
out RAG achieved a low recall of 48.98%, which is sig-
nificantly lower than all configurations with RAG. This
demonstrated that RAG effectively enhanced the LLM’s
diagnostic performance.

Table 2: Comparison of retrieval configurations

Configuration Accuracy% Recall% F1 Score
P1 No RAG 54.55 48.98 0.52
P1 RAG k=8 52.53 85.71 0.64
P2 RAG k=8 58.59 87.76 0.68
P2 RAG k=8 (bal) 58.59 89.80 0.68
P2 RAG k=16 52.53 77.55 0.62

Page 3



The performance degradation observed at k=16 (52.53%
accuracy) may be attributed to the introduction of exces-
sive retrieved cases, which likely added noise rather than
providing useful diagnostic context and potentially over-
whelmed the LLM’s reasoning capacity. In contrast, the
balanced retrieval strategy at k=8 achieved the highest re-
call and F1 score, suggesting the influence of maintaining
an appropriate proportion of representative positive and
negative examples within the retrieval set.

These findings suggest alignment with our prompt en-
gineering results, indicating that both prompt quality and
RAG quantity may significantly influence LLM diagnos-
tic performance. Neither maximal information provision
nor extreme simplification yields optimal performance. In-
stead, balanced, focused contextual guidance appears to
achieve the best diagnostic reasoning outcomes.

4. Discussion

Our CardioRAG framework represents a zero-shot
learning paradigm based on LLMs, achieved substantially
higher recall. It enables effective learning with limited data
while explicitly incorporating established clinical indica-
tors (RBBB, LAFB, HRV), providing interpretability ad-
vantages over black-box networks [14]. In contrast, recent
ECG-based Chagas detection work has focused on super-
vised deep learning [5], achieving moderate performance
but requiring extensive labeled data.

The observed 58–59% accuracy ceiling may reflect lim-
itations associated with the relatively small model size
(1.5B parameters) in our implementation. Larger models
and further multi-modal information, such as temporal dis-
ease patterns, should be evaluated. The computational re-
quirements (25-40 seconds per case) and dependence on
proprietary LLMs require investigation of model compres-
sion and open-source alternatives for practical deployment
in resource-constrained settings.

5. Conclusion

CardioRAG integrates LLMs with interpretable ECG
clinical features for Chagas disease screening, achiev-
ing 87.76% recall. Our analysis revealed that simpli-
fied prompts outperformed detailed descriptions; moderate
case retrieval (k=8) with balanced cases achieved optimal
performance. The main limitation is limited accuracy, sug-
gesting a need to explore larger language models.

The framework’s high recall makes it valuable for initial
screening and patient triaging especially in low-resource
regions. Moreover, by integrating RAG with LLM-based
diagnostic reasoning, the framework could inherently co-
evolve with advances in large language models. Fu-
ture work should explore the integration of larger LLMs,

enhanced multi-modal retrieval, and clinical validation
across diverse populations.

References

[1] World Health Organization. Chagas Disease, 2025. URL
https://www.who.int/health-topics/chagas-disease.

[2] Acquatella H. Echocardiography in Chagas Heart Disease.
Circulation 2007;115(9):1124–1131.

[3] Reyna MA, et al. Detection of Chagas Disease from the
ECG: The George B. Moody PhysioNet Challenge 2025.
In Computing in Cardiology 2025, volume 52. 2025; 1–4.

[4] Reyna MA, et al. Detection of Chagas Disease from the
ECG: The George B. Moody PhysioNet Challenge 2025,
2025. URL https://arxiv.org/abs/2510.02202.

[5] Jidling C, et al. Screening for Chagas Disease from the
Electrocardiogram Using a Deep Neural Network. PLoS
Neglected Tropical Diseases 2023;17(7):e0011118.

[6] Shen Z, Gao B, Shi M. COBRA: Multimodal Sensing Deep
Learning Framework for Remote Chronic Obesity Manage-
ment via Wrist-Worn Activity Monitoring. In IUPESM
World Congress on Medical Physics and Biomedical En-
gineering 2025. Adelaide, Australia, 2025; .

[7] Patrini G, et al. Making Deep Neural Networks Robust to
Label Noise: A Loss Correction Approach. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017; 1944–1952.

[8] Lewis P, et al. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural
Information Processing Systems, volume 33. 2020; 9459–
9474.

[9] Kingma DP, Welling M. Auto-Encoding Variational Bayes,
2022. URL https://arxiv.org/abs/1312.6114.

[10] Goldberger AL, et al. PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a New Research Resource for Com-
plex Physiologic Signals. Circulation 2000;101(23):e215–
e220.

[11] Prineas RJ, Crow RS, Zhang ZM. The Minnesota Code
Manual of Electrocardiographic Findings. Springer, 2010.

[12] Ribeiro ALP, et al. Power-Law Behavior of Heart Rate Vari-
ability in Chagas’ Disease. The American Journal of Car-
diology 2002;89(4):414–418.

[13] Ng KKY, et al. RAG in Health Care: A Novel
Framework for Improving Communication and Decision-
Making by Addressing LLM Limitations. Nejm Ai 2025;
2(1):AIra2400380.

[14] Abbasian Ardakani A, et al. Interpretation of Artifi-
cial Intelligence Models in Healthcare: A Pictorial Guide
for Clinicians. Journal of Ultrasound in Medicine 2024;
43(10):1789–1818.

Address for correspondence:

Mayue Shi
Institute of Biomedical Engineering, Department of Engineering
Science, University of Oxford, Oxford OX3 7DQ, UK.
mayue.shi@eng.ox.ac.uk and m.shi16@imperial.ac.uk.

Page 4


